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Abstract

Entrained fluid heat capacity is shown to have a significant and positive effect on the performance of a passive regen-
erator. The ineffectiveness of the regenerator is presented as a function of three dimensionless parameters: the number
of transfer units, the utilization, and the entrained fluid to matrix heat capacity ratio. Three different behaviors are
observed for a regenerator with entrained fluid heat capacity. The effect of the entrained fluid can be accounted for over
a large range of conditions using the concept of an augmented-NTU which can be substituted for the actual NTU in
analyses that neglect entrained fluid capacity.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Regenerative heat exchangers are used in many appli-
cations including cryogenic refrigeration systems, for
building energy recovery, and in gas turbine systems.
The heat capacity of the fluid, often a gas that is en-
trained in the void volume of the regenerator matrix, is
typically very small relative to the heat capacity associ-
ated with the regenerator matrix itself. Therefore, the ef-
fect of this entrained fluid heat capacity is almost always
neglected in regenerator analyses. A large number of
analytical and numerical solutions to the regenerator
governing equations have been presented. These include
papers by Nusselt [1], Hill and Wilmott [2], and Atthey
[3] in which axial conduction is neglected, as well as
0017-9310/$ - see front matter � 2005 Elsevier Ltd. All rights reserv
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works by Bahnke and Howard [4], Shen and Worek [5],
and Klein and Eigenberger [6] which account for axial
conduction. None of these analyses consider the effect
of the entrained heat capacity in the regenerator.

Recently there has been considerable interest in
active magnetic regenerative refrigeration (AMRR) sys-
tems for near room temperature applications [7–9]. In an
AMRR system, a heat transfer fluid (e.g., water) is cycli-
cally passed through a regenerator matrix that exhibits a
magnetocaloric effect; the entropy of the matrix is
affected by magnetic field as well as by temperature.
The heat capacity of the fluid entrained in the matrix
is non-negligible in this application and can be nearly
equal to the matrix heat capacity in a practical design.
As a result, the entrained fluid heat capacity should
not be neglected when modeling an AMRR system.
Also, regenerative heat exchangers are being used at
increasingly lower temperatures in cryogenic refrigera-
tion devices. At very low temperature, the volumetric
ed.
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Nomenclature

As surface area (m2)
AF augmentation factor
c specific heat capacity (J/kg K)
C total heat capacity (J/K)
CSR critical time step ratio
h heat transfer coefficient (W/m2 K)
ieff ineffectiveness
L regenerator length (m)
_m mass flow rate (kg/s)
n number of control volumes in numerical

solution
NTU number of transfer units
NTU� augmented number of transfer units
R entrained fluid to regenerator capacity ratio
t time (s)
T temperature (K)
U utilization
x axial position (m)

Greek symbols

Dg reduced time step
e effectiveness
g reduced time
k duration of flow process (s)
P reduced period
h dimensionless temperature
n reduced position

Subscripts

c cold end of bed
cr critical reduced time step
f fluid
h hot end of bed
i subscript of control volume
r regenerator
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heat capacity of the entrained fluid increases due to its
increasing density whereas the heat capacity of most sol-
ids rapidly decrease; therefore, the heat capacity of the
entrained fluid may become non-negligible in this
application.

There has been relatively little work that is aimed
specifically at understanding the effect of entrained fluid
heat capacity on regenerator performance. Willmott and
Hinchcliffe [10] develop an approximate model that is
used to estimate the effect of the entrained fluid heat
capacity on the regenerator performance. They report
results over a limited range of operating conditions
and show that entrained gas has a generally positive ef-
fect on the performance of the regenerator, particularly
when the number of transfer units is low. Daney and
Radebaugh [11] numerically solve the governing equa-
tions for a matrix with entrained heat capacity and pres-
ent a numerical experiment which demonstrates that, for
low thermal loads, the effectiveness of the regenerator
will actually decrease as the matrix heat capacity in-
creases. They attribute this counter-intuitive behavior
to the situation where a thermal wave is contained with-
in the heat exchanger, a result that is consistent with the
conclusions described here. Neither of these studies re-
sulted in a complete understanding of how entrained
heat capacity affects the performance of a passive regen-
erator, when the effect of entrained heat capacity is
important, or how a designer might estimate the magni-
tude of this effect during a regenerator analysis.

This paper describes a numerical model in which the
entrained heat capacity in a regenerator is included in
the governing equations. The model is verified against
solutions found in the literature in the limit of no en-
trained heat capacity and subsequently used to specifi-
cally investigate the behavior of a regenerator as the
entrained heat capacity becomes significant. Three fun-
damental behaviors are identified: the ‘‘NTU-limited’’
and ‘‘capacity-limited’’ behaviors are found even in the
absence of entrained fluid heat capacity; however, a
third, ‘‘stratified’’ behavior is also observed. The behav-
ior of the regenerator in this region is non-intuitive; per-
formance may decrease with increasing NTU or
increasing matrix heat capacity. The regimes associated
with these behaviors are delineated on a map that is pre-
sented in terms of the fundamental dimensionless param-
eters that define the operating condition for the
regenerator. The concept of an augmented-NTU is intro-
duced to account for entrained fluid heat capacity in the
‘‘NTU-limited’’ region, which is the region of greatest
practical interest to a regenerator designer. Using the
augmented-NTU in place of the actual NTU allows
computationally simpler models that neglect the effect
of entrained fluid to provide estimates of regenerator per-
formance that account for this effect. The augmented-
NTU approach can be used in conjunction with other
correction factors such as those proposed by Jeffreson
to account for temperature gradients that are internal
to the regenerator matrix and axial dispersion [12].
2. Governing equations

The governing equations for the regenerator are de-
rived here assuming a passive regenerator with constant
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matrix and fluid properties, no axial conduction, and
balanced flow. The purpose of this analysis is to specif-
ically consider the effect of the entrained fluid heat
capacity. One outcome of this work is an approximate
correction technique, the augmented-NTU approach.
Therefore, these assumptions are not particularly limit-
ing as the authors expect that the concept of an aug-
mented-NTU can be integrated with complex models
of regenerative heat exchangers in much the same way
that the Jeffreson correction is used.

The governing equation for the matrix is:

hAsðT f � T rÞ ¼ Cr
oT r

ot
ð1Þ

where h is the heat transfer coefficient, As is the total sur-
face area, Cr is the total regenerator heat capacity, Tf

and Tr are the fluid and regenerator temperatures, and
t is time. The flow pattern considered here consists of
two processes. During the hot-to-cold flow process, a
constant mass flow rate enters the matrix from the hot
end (x = 0). During the cold-to-hot flow process, an
equal mass flow rate enters the matrix from the cold
end (x = L). The duration of the two processes (k) is
the same. The fluid energy balance during the hot-to-
cold flow portion of the cycle (0 < t < k) is:

hAs

L
ðT r � T fÞ ¼ _mcf

oT f

ox
þ Cf

L
oT f

ot
ð2Þ

where L is the length of the regenerator, _m is the mass
flow rate, cf is the specific heat capacity of the fluid,
and Cf is the total fluid heat capacity entrained in the
regenerator. During the cold-to-hot flow portion of the
cycle (k < t < 2k) the fluid energy balance becomes:

hAs

L
ðT r � T fÞ þ _mcf

oT f

ox
¼ Cf

L
oT f

ot
ð3Þ

The inlet temperature of the fluid during the two flow
processes is assumed to be constant in time:

T fðx ¼ 0; tÞ ¼ T h 0 < t < k ð4Þ
T fðx ¼ L; tÞ ¼ T c k < t < 2k ð5Þ

where Th is the hot end temperature and Tc is the cold
end temperature. After initial transients have dissipated,
the fluid and regenerator temperatures must go through
a steady state cycle:

T fðx; t ¼ 0Þ ¼ T fðx; t ¼ 2kÞ ð6Þ
T rðx; t ¼ 0Þ ¼ T rðx; t ¼ 2kÞ ð7Þ

These equations are made dimensionless by defining a
reduced position (n) and reduced time (g), as described
by Ackerman [13]:

n ¼ hAs

_mcf

x
L

ð8Þ

g ¼ hAs

Cr

t ð9Þ
The dimensionless temperature (h) is defined according
to:

h ¼ T � T c

T h � T c

ð10Þ

The reduced period (P) and number of transfer units
(NTU) are defined according to:

P ¼ hAs

Cr

k ð11Þ

NTU ¼ hAs

_mcf
ð12Þ

Finally, the entrained fluid to regenerator capacity ratio
(R) is defined:

R ¼ Cf

Cr

ð13Þ

Substituting Eqs. (8)–(13) into Eqs. (1)–(7) leads to:

ohr
og

¼ hf � hr ð14Þ

ohf
on

þ R
ohf
og

¼ hr � hf 0 < g < P ð15Þ

ohf
on

¼ R
ohf
og

þ hf � hr P < g < 2P ð16Þ

The boundary conditions are:

hfðn ¼ 0; gÞ ¼ 1 0 < g < P ð17Þ
hfðn ¼ NTU; gÞ ¼ 0 P < g < 2P ð18Þ
hfðn; g ¼ 0Þ ¼ hfðn; g ¼ 2PÞ ð19Þ
hrðn; g ¼ 0Þ ¼ hrðn; g ¼ 2PÞ ð20Þ

The effectiveness of the regenerator (e) is defined as:

e ¼
R k
0
½T w � T fðx ¼ L; tÞ�dt

½T w � T c�k
ð21Þ

or

e ¼ 1

P

Z P

0

½1� hfðn ¼ NTU; gÞ�dg ð22Þ

The ineffectiveness (ieff) is therefore:

ieff ¼ 1� e ¼ 1

P

Z P

0

hfðn ¼ NTU; gÞdg ð23Þ
3. Numerical solution

The governing equations are solved in the general
limit where R is finite and non-zero as well as in the spe-
cific limit where R is zero, corresponding to no fluid heat
capacity entrained in the matrix. In either case, the solu-
tion is obtained over a uniformly distributed set of n

control volumes such that:

ni ¼
ði� 0:5Þ

n
NTU i ¼ 1; . . . ; n ð24Þ
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The discretized form of Eq. (14) provides the time rate of
change of the dimensionless regenerator temperature for
any control volume:

ohr
og

� �
i

¼ hf;i � hr;i for i ¼ 1; . . . ; n ð25Þ

If R is finite, then the time rate of change of the dimen-
sionless fluid temperature for an internal control volume
is obtained by discretizing Eqs. (15) and (16):

ohf
og

� �
i

¼ 1

R
hr;i � hf ;i �

ðhf;iþ1 � hf;i�1Þn
2NTU

� �

i ¼ 2; . . . ; ðn� 1Þ 0 < g < P ð26Þ
ohf
og

� �
i

¼ 1

R
hr;i � hf ;i þ

ðhf;iþ1 � hf;i�1Þn
2NTU

� �

i ¼ 2; . . . ; ðn� 1Þ 0 < g < P ð27Þ

For the control volumes at the edges of the computa-
tional domain, the discretized form of Eqs. (26) and
(27) for the control volumes that are adjacent to the
hot end and cold end are:

ohf
og

� �
1

¼ 1

R
hr;1 � hf ;1 �

ðhf ;2 � 1Þ2n
3NTU

� �
0 < g < P ð28Þ

ohf
og

� �
1

¼ 1

R
hr;1 � hf ;1 þ

ðhf ;2 � hf ;1Þn
NTU

� �
P < g < 2P

ð29Þ
ohf
og

� �
n

¼ 1

R
hr;n � hf ;n �

ðhf ;n � hf ;n�1Þn
NTU

� �
0 < g < P

ð30Þ
ohf
og

� �
n

¼ 1

R
hr;n � hf ;n þ

ð0� hf ;n�1Þ2n
3NTU

� �
P < g < 2P

ð31Þ

Eqs. (25)–(31) are integrated forward in time using a
predictor–corrector technique until a cyclic steady state
is achieved. A cyclic steady state is defined based on
the relative change in the ineffectiveness calculated using
Eq. (23), between subsequent cycles. For the cases re-
ported in this paper, a cyclic steady state occurs when
the relative change in ineffectiveness is less than 0.001%.

The size of the reduced time step (Dg) used to carry
out the time integration is based on an estimate of the
critical reduced time step required for numerical stability
(Dgcr). Evaluating Eq. (29) for the critical time step
yields:

Dgcr ¼
R

1þ n
NTU

ð32Þ

The reduced timestep used in the simulation is specified
as a ratio of this critical reduced timestep (CSR):

Dg ¼ CSRDgcr ð33Þ

The value of CSR used for the results reported here is
0.05 and the number of control volumes, n, is 800. Sen-
sitivity studies indicated that these numerical parameters
provided ineffectiveness values that were accurate to at
least 0.0001 over most conditions.

In the limit of R equal to zero, the governing equa-
tions change fundamentally; the rate of change of the
dimensionless fluid temperature is unbounded in this lim-
it according to Eqs. (26)–(31). Alternatively, Eq. (32)
shows that an infinitely small time step is required for sta-
bility as R approaches zero. In this limit, the dimension-
less fluid temperature distribution responds instantly to
changes in the dimensionless regenerator temperature
distribution. The system of equations that defines the
dimensionless fluid temperatures at each time step is:

hr;i � hf ;i �
ðhf ;iþ1 � hf;i�1Þn

2NTU
¼ 0

i ¼ 2; . . . ; ðn� 1Þ 0 < g < P ð34Þ

hr;i � hf ;i þ
ðhf ;iþ1 � hf;i�1Þn

2NTU
¼ 0

i ¼ 2; . . . ; ðn� 1Þ 0 < g < P ð35Þ

hr;1 � hf ;1 �
ðhf ;2 � 1Þ2n

3NTU
¼ 0

0 < g < P ð36Þ

hr;1 � hf ;1 þ
ðhf ;2 � hf ;1Þn

NTU
¼ 0

P < g < 2P ð37Þ

hr;n � hf ;n �
ðhf ;n � hf ;n�1Þn

NTU
¼ 0

0 < g < P ð38Þ

hr;n � hf ;n þ
ð0� hf;n�1Þ2n

3NTU
¼ 0

P < g < 2P ð39Þ
The dimensionless regenerator temperatures are inte-
grated forward in time using Eq. (25) with the same pre-
dictor–corrector technique. The dimensionless fluid
temperatures at each time are calculated using Eqs.
(34)–(39) and the process is continued until a cyclic stea-
dy state is reached.
4. Verification of model

The ineffectiveness of the regenerator is a function of
three dimensionless variables: the number of transfer
units, reduced period, and the entrained fluid to regener-
ator capacity ratio:

ieff ¼ ieffðNTU;P;RÞ ð40Þ

A dimensionless parameter that is more physically
meaningful than the reduced period (P) is the utilization
(U) which is the ratio of the heat capacity of the fluid
forced through the regenerator to the total heat capacity
in the regenerator. Here, the utilization is defined based
on the sum of the heat capacity of the entrained fluid
and the regenerator matrix.
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U ¼ _mcfk
ðCr þ CfÞ

¼ P
NTUð1þ RÞ ð41Þ

The functional form of the ineffectiveness can therefore
be written as:

ieff ¼ ieffðNTU;U ;RÞ ð42Þ
In the limit of zero entrained fluid heat capacity (R = 0)
it is possible to compare the results of this model with
results reported in the literature. For example, Draguti-
novic and Baclic [14] tabulate the ineffectiveness of a bal-
anced and symmetric regenerator as a function of U and
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NTU. Fig. 1 illustrates the ineffectiveness predicted by
the numerical model presented here in the R = 0 limit
as a function of NTU for several values of U. Also
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5. Results
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R = 0 and R = 1.0. The curves correspond to two regen-
erators that have the same total heat capacity which is
large relative to the heat capacity of the flowing fluid;
in the R = 0 case this heat capacity is entirely in the ma-
trix whereas in the R = 1.0 case, the heat capacity is split
equally between the matrix and the entrained fluid. At
any value of NTU, the regenerator performance is im-
proved as R is increased from 0 to 1. However, regener-
ator performance exhibits a non-intuitive dependence on
NTU at R = 1, first decreasing and then increasing, as
NTU is increased.

A general observation, seen in Fig. 2, is that the per-
formance of the regenerator is always enhanced when
more of the total available heat capacity is associated
with the fluid as opposed to the regenerator, i.e., as R

is increased. Increasing R essentially removes the resis-
tance to heat transfer between the fluid and some of
the available heat capacity that is otherwise associated
with the fluid-to-matrix heat transfer coefficient.

Fig. 3(a) illustrates the dimensionless temperature as
a function of dimensionless time for NTU = 20,
U = 0.1, and R = 0 (Case A in Fig. 2) and Fig. 3(b)
shows the dimensionless temperature variation for
NTU = 20, U = 0.1, and R = 1.0 (Case B in Fig. 2). No-
tice in Case A that the entrained fluid is assumed to have
no thermal mass and therefore in this limit the fluid tem-
perature responds instantaneously to changes in the flow
or changes in the regenerator temperature. The regener-
ator temperature fluctuates as the energy associated with
the fluid flow is stored over a cycle; all of the heat trans-
fer required for this energy storage must pass through
the thermal resistance between the fluid and the regener-
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ator and therefore there is a significant difference be-
tween hf and hr during the cycle. In Case B, the entrained
fluid heat capacity is significant and therefore the fluid
temperature does not respond instantaneously; rather a
time lag exists between changes in the regenerator tem-
perature and changes in the fluid temperature. Also,
only a portion of the energy rejected by the flowing fluid
must be stored in the regenerator; nominally half of this
energy is stored in the entrained fluid when R = 1. As a
result, the thermal energy that must be transferred be-
tween the fluid and the matrix is nominally 50% of its
value in Case A and the temperature difference between
hf and hr is reduced accordingly. The net result is that
Case B exhibits better performance than Case A, as evi-
denced by the lower ineffectiveness in Fig. 2.

Notice in Fig. 2 that the behavior of the R = 1.0
curve at low NTU differs markedly at low NTU as com-
pared to high NTU. The ineffectiveness actually is re-
duced with decreasing NTU. As NTU is reduced, more
of the energy storage occurs in the fluid; the regenerator
is thermally disconnected from the fluid whereas the
fluid capacity of the entrained fluid is not. This effect
is not seen for the R = 0 curve in which ineffectiveness
monotonically decreases with increasing NTU and
therefore must be directly related to the entrained fluid
heat capacity.

Fig. 4(a) illustrates the dimensionless temperature as
a function of dimensionless axial position for NTU =
1.0, U = 0.1, and R = 0 (Case C in Fig. 2) and
Fig. 4(b) shows the dimensionless temperature profile
for NTU = 1.0, U = 0.1, and R = 1.0 (Case D in
Fig. 2). In Case C, the entrained fluid heat capacity is as-
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the matrix heat capacity and therefore experiences very
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in either direction. This situation is analogous to passing
a large mass flow rate through a small pipe with very lit-
tle surface area; the fluid temperature is changed very lit-
tle over a period and therefore the ineffectiveness in this
limit is large. The regenerator temperature changes
slightly during the cycle. The fluid temperature changes
instantaneously at the conclusion of the flow processes
in the absence of entrained fluid heat capacity; at
t/k = 1.0�, the end of the hot-to-cold flow process, the
dimensionless fluid temperature goes from 1.0 at
x/L = 0 to nominally 0.67 at x/L = 1.0. At t/k = 1.0+,
the beginning of the cold-to-hot flow process, the dimen-
sionless fluid temperature goes from 0.0 at x/L = 1.0 to
nominally 0.33 at x/L = 0.

In Case D, the entrained fluid heat capacity is large
relative to the fluid passing through the matrix. When
U = 0.1 and R = 1.0, the capacity of the entrained fluid
is 5 · the capacity of the flowing fluid. Said differently,
the void volume of the matrix is approximately 5 · the
volume of the flow that enters the matrix during the flow
processes. As a result, the matrix stops acting like a con-
ventional regenerator and instead acts as a stratified
storage tank. A fluid temperature distribution forms
that has a nearly constant shape and a sharp transition
from hot to cold. The position of the temperature distri-
bution oscillates axially during the cycle; during the
hot-to-cold flow process, it moves towards the cold
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end. For the conditions considered in Fig. 4(b), the axial
oscillation is nominally 20% of the length of the bed.
During the cold-to-hot flow process, the temperature
distribution moves back towards the hot end. In this
limit, the ineffectiveness approaches zero as the number
of transfer units drops and the regenerator heat capacity
becomes further de-coupled from the process. The cold
fluid is essentially stored in the bed during the cold-to-
hot flow part of the process and then delivered again
to the cold end during the hot-to-cold flow part of the
process. The regenerator matrix is not well-coupled to
the fluid and therefore the temperature distribution in
the matrix material is essentially unchanging in time. It
should be noted that this is not a practical operating
condition for most regenerative systems as effects such
as axial conduction, mixing, and dispersion would tend
to eliminate the standing wave in favor of a more uni-
form temperature distribution. This behavior is referred
to as ‘‘stratified’’ because it resembles the behavior ex-
pected for a stratified storage tank.

Fig. 5 illustrates the ineffectiveness as a function of
number of transfer units for a high utilization, U = 2.0
for two values of R, R = 0.0 and R = 1.0, corresponding
to two regenerators that have the same total heat capac-
ity which is less than the heat capacity of the flowing
fluid. Again, in the R = 0 case this heat capacity is en-
tirely in the matrix whereas in the R = 1.0 case the heat
capacity is split equally between the matrix and the
entrained fluid.

Fig. 6(a) illustrates the dimensionless temperature as
a function of dimensionless time for NTU = 5.0,
U = 2.0, and R = 0 (Case E in Fig. 5) and Fig. 6(b)
shows the dimensionless temperature variation for
NTU = 5.0, U = 2.0, and R = 1.0 (Case F in Fig. 5).
Notice that in either case, the fluctuation of the fluid
temperature during a cycle is quite large due to the lim-
ited heat capacity. The performance of the regenerator is
therefore fundamentally limited by the total heat capac-
ity available in the regenerator; the distribution of the
heat capacity between the matrix and entrained fluid
does not affect this limit, as evidenced in Fig. 5 by the
fact that the U = 2.0 curves collapse for R = 0.0 and
R = 1.0. This behavior is referred to as ‘‘capacity-
limited’’.

Figs. 3, 4 and 6 illustrate three basic behaviors that
can describe a regenerator with entrained fluid heat
capacity. The ‘‘stratified’’ behavior tends to occur at
low NTU, low U, and high R where the heat capacity
of the entrained fluid is large relative to the heat capacity
of the flowing fluid and the heat capacity of the matrix is
decoupled from the problem. In this limit of NTU going
to zero, the ineffectiveness approaches 0. The ‘‘capacity-
limited’’ behavior tends to occur at high U (>1), high
NTU, and becomes more pronounced at higher values
of R (although this behavior is also exhibited with
R = 0) when the temperature variation of the fluid is
limited by the total available heat capacity and therefore
the ineffectiveness becomes independent of either NTU
or R and instead depends only on U. Finally, there is
the typical operating region associated with a regenera-
tor, referred to as ‘‘NTU-limited’’ behavior which tends
to occur at moderate to low values of R, high NTU, and
low U. In this region, the available heat capacity is large
relative to the heat capacity of the fluid and the fluid is in
intimate contact with the regenerator matrix.

Fig. 7 illustrates the ineffectiveness as a function of
NTU for several values of U and a fixed value of
R = 0.5. In Fig. 7 it is possible to determine the points
that delineate the three regimes of behavior that have
been discussed. At high values of U, the curves asymp-
tote to some fixed value of ineffectiveness; the transition
between ‘‘NTU-limited’’ and ‘‘capacity-limited’’ behav-



Fig. 7. Ineffectiveness as a function of NTU for R = 0.5 and various values of U. Note that the transition between ‘‘NTU-limited’’ and
‘‘capacity-limited’’ behavior is shown by the solid circles on the high U curves and the transition between ‘‘stratified’’ and ‘‘NTU-
limited’’ behavior is shown by the open circles on the low U curves.

Fig. 8. Regions of ‘‘stratified’’, ‘‘capacity-limited’’, and ‘‘NTU-limited’’ behavior in the space of NTU and U for various values of R.

G.F. Nellis, S.A. Klein / International Journal of Heat and Mass Transfer 49 (2006) 329–340 337
ior is shown by the solid symbols in Fig. 7. At low values
of U, the curves exhibit a maximum at some low value of
NTU. The transition between ‘‘stratified’’ and ‘‘NTU-
limited’’ is shown by the open symbols in Fig. 7.

Fig. 8 illustrates the different regimes of behavior in
the space of NTU and U for different values of R; for
the R = 0.5 case, the curves shown in Fig. 8 are obtained
by plotting the open and closed symbols shown in Fig. 7
in terms of their NTU and U values. The ‘‘stratified’’
behavior occurs in the lower left-hand corner of Fig. 8;
the extent of this region grows with increasing R. There
is no region of ‘‘stratified’’ behavior in the limit of
R = 0. The ‘‘capacity-limited’’ behavior occurs in the
upper right-hand corner of Fig. 8; the extent of this re-
gion also grows with increasing R although this behavior
is exhibited even in the limit of R = 0.

The typical operating condition for a regenerator
is U < 1 and NTU > 10, which corresponds to the



338 G.F. Nellis, S.A. Klein / International Journal of Heat and Mass Transfer 49 (2006) 329–340
‘‘NTU-limited’’ region. This region is therefore of con-
siderable, practical interest to the regenerator designer
and the following section presents a technique whereby
the performance enhancement associated with entrained
fluid heat capacity can be accounted for using an aug-
mented-NTU in the ‘‘NTU-limited’’ region.
6. Augmented-NTU approach

Fig. 9 illustrates the ineffectiveness as a function of
NTU for U = 0.3 and several values of R. As previously
discussed, increasing R tends to improve the perfor-
mance of the regenerator and therefore, the use of an
R = 0 solution for a matrix with a non-zero R will
over-predict the ineffectiveness. Case G in Fig. 9 corre-
sponds to U = 0.3, NTU = 40, and R = 0.5 and results
in an ineffectiveness of 0.026. If the performance at this
condition were evaluated in the R = 0 limit, correspond-
ing to Case H (U = 0.3, NTU = 40, R = 0) in Fig. 9,
then a much larger ineffectiveness would be predicted,
nominally 0.054. The augmented-NTU technique can
be used to approximately account for this effect by arti-
ficially increasing the NTU associated with the regener-
ator in order to account for the reduced matrix-to-fluid
heat transfer that is required as R increases. The aug-
mented-NTU is determined by finding the NTU with
R = 0 that results in the same ineffectiveness predicted
for the non-zero R condition; in Fig. 9, this augmented
NTU operating point is shown as Case I (U = 0.3,
NTU = 90.5, R = 0). Therefore, the augmented-NTU,
referred to as NTU�, associated with U = 0.3, R = 0.5,
Fig. 9. Ineffectiveness as a function of NTU
and NTU = 40 is 90.5. This approach is analogous to
the idea of using a pseudo-Stanton number or apparent
heat transfer coefficient to account for particle internal
conductivity or axial dispersion, as described by Jeffre-
son [12]. Notice that the range of NTU shown in
Fig. 9 is restricted to the ‘‘NTU-limited’’ region and
the augmented-NTU approach described in this section
is likewise restricted to this region.

The augmented number of transfer units (NTU�) is
defined as the number of transfer units that would give
the same ineffectiveness with R = 0:

NTU� ¼ NTUðieffðNTU;U ;RÞ;U ;R ¼ 0Þ ð43Þ

NTU� has the same functional dependence as the
ineffectiveness:

NTU� ¼ NTU�ðNTU;U ;RÞ ð44Þ

Fig. 10 illustrates the NTU� for U = 0.3 as a function of
NTU and the same values of R that were shown in
Fig. 9. Note that the relationship between NTU� and
NTU is essentially linear for any given value of R

and U; these lines approximately pass through zero
and therefore the augmented number of transfer units
can be written as:

NTU� ¼ AFðR;UÞNTU ð45Þ

where AF is the slope of the line, referred to as the aug-
mentation factor, which is in general a function of both
R and U. The best fit lines for the various R values are
also shown in Fig. 10.

Fig. 11 illustrates the augmentation factor as a func-
tion of R for various values of U. Notice that the aug-
for U = 0.3 and various values of R.



Fig. 11. Augmentation factor as a function of R for various values of U. The best-fit polynomial that described AF(R) is given by Eq.
(46) and shown as the heavy line.

Fig. 10. Augmented-NTU as a function of NTU for U = 1.0 and various values of R. Notice that the variation is essentially linear and
can be described by Eq. (45); the best fit lines are also shown.
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mentation factor is not a strong function of U provided
that the range of U and NTU considered does not ex-
tend into the ‘‘capacity-limited’’ or ‘‘stratified’’ regions
shown in Fig. 8. In the ‘‘NTU-limited’’ region, the aug-
mentation factor is a function only of R. The best-fit
polynomial to the augmentation factor is also shown
in Fig. 11 and is given below:

AF ¼ 1þ 1:7640Rþ 1:0064R2 ð46Þ
7. Conclusions

The effect of entrained fluid heat capacity is not typ-
ically considered in the analysis of regenerative heat
exchangers. This paper describes a numerical model in
which this effect is specifically analyzed. It is shown that
the behavior of a regenerator with entrained fluid
heat capacity can be divided qualitatively into three
regimes.
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1. A ‘‘stratified’’ regime in which the fluid flow has a
small capacity relative to the entrained fluid heat
capacity and the fluid is de-coupled thermally from
the regenerator. In this limit, a standing wave exists
that oscillates axially during the flow processes.

2. A ‘‘capacity-limited’’ regime in which the total capac-
ity of the matrix and entrained fluid is small relative
to the fluid flow capacity. In this limit, the perfor-
mance of the matrix is limited by the available heat
capacity and is independent of the distribution of this
capacity or the number of transfer units.

3. An ‘‘NTU-limited’’ regime, which is typical of most
regenerator operating conditions. In this regime, the
performance of the regenerator is a function of the
total available heat capacity, the thermal communi-
cation between the regenerator and the fluid, and
the distribution of the total heat capacity between
the entrained fluid and the matrix.

The ‘‘NTU-limited’’ regime is of the greatest practi-
cal interest to the regenerator designer and therefore
the effect of the entrained fluid heat capacity in this re-
gion was investigated. It was found that it is always ben-
eficial to have a larger fraction of the total heat capacity
in the regenerator associated with the entrained fluid as
compared with concentrated in the matrix material. This
heat capacity is accessible to the flowing fluid without
requiring a heat flow through the thermal resistance
associated with the heat transfer coefficient between
the fluid and the matrix material. In order to quantify
this effect and correct for it, the concept of an aug-
mented number of transfer units was introduced. The
augmented NTU reflects the reduction in the fluid-to-
matrix heat transfer that accompanies the increase in
the entrained fluid heat capacity. It was found that the
augmented-NTU was a linear function of NTU; the
slope of this linear function is defined as the augmenta-
tion factor and depends on the entrained fluid to regen-
erator heat capacity ratio, R, but not the utilization
factor, U. The augmentation factor is correlated with
R in the ‘‘limited-NTU’’ region.
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